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Abstract We first establish an algebraic spcture related to zero curvature representations 
and propose a new approach for calculafing symmetry algebras of integrable systems. Then we 
deduce a hierarchy of non-isospectral flows associated with coupled Kdv systems from a specual 
problem with the Laurent polynopial dependent form of the spectral parameter. Furthermore, 
the commutator relations of Lax operators corresponding to isospechal and non-isospectral flows 
are worked out according to this algebraic shucture. and thus a symmetry algebra for coupled 
Kdv systems is engendered from this general theory. ; 

1. Introduction 

In general, for a spectral problem, the non-isospectral (A, = A", n > 0) hierarchy of vector 
fields is the usual first-order master symmetries [l] of the isospectral (Al. = 0) hierarchy 
of evolution equations. Moreover, isospectral and non-isospectral flows often constitute a 
semi-product Lie algebra of a Kac-Moody algebra and a Virasoro algebra (see, for example, 
[2-51). Furthermore, on the basis of Lax representations, we have shown in Ma [6] that the 
hierarchies of two corresponding Lax operators also constitute the same infinite-dimensional 
Lie algebra, when integrable systems possess a strong [7] and hereditary [8] symmetry 
operator. 
3 the present paper, we employ zero curvature representations other than Lax 

representations to consider integrable systems. We first propose an algebraic structure for 
zero curvature representations of integrable systems. Then we briefly derive the isospectral 
and non-isospectral hierarchies of integrable systems from a spectral problem with the 
Laurent polynomial~dependent form of A 

O < l S q - I  fl .1) 

where U = (UO, VI,. ..,u~-I)~. The corresponding isospectral hierarchy has been discussed 
in Ma [9] and Boiti et al [ 101 in considerable detail and is called a coupled KdV hierarchy in 
Antonowicz and Fordy [ll] because of certain coupled KdV flows of the hierarchy. Finally 
we show that two hierarchies of Lax operators associated with zero curvature representations 
constitute an infinitedimensional Lie algebra, and thus the symmetry algebra of coupled 
KdV hierarchy is deduced. 

t Mailing address. 

030S4470/93/112S73+10$07.S0 @ 1993 IOP Publishing Ltd 2573 



2574 Wen-xiu Ma 

2. Algebraic structure of Lax operators of zero curvature representations 

Let x ,  t E R ,  U = (ut. U*, .. . , u ~ ) ~ ,  ui = u&,t) ,  1 < i ,< q. We denote by B all 
complex (or real) functions P [ u ]  = P ( x ,  f, U) which are Cm-differentiable with~respect to 
x ,  t and Cm-Gateaux differentiable with respect to U = u(x )  (as functions of x) .  and set 
B‘ = [(PI, . . . , Pr)‘ I Pi E B]. Moreover by Vlo, we mean all matrix differential operators 
W = (Wij),xr of zero order, where W, E 8, 1 6 i, j ,< r, and set V{ol = Viol 8 C[A, A-’]. 
For K E B’, W E v;ol, and S E 5. we define 

(2.1) 

(2.2) 

- 
a 

a6 

a 
K’[S]  = zK(u +€S)I,=o W’[S] = -W(u +ES)I.=O. 

It is known (see [12]) that Bq forms a Lie algebra under the following product 

The commutator of two smooth functions f, g E C“(C) (as vector fields over C) is defined 

(2.3) 

[K, SI = K’[S] - S’[K] K, S E u4. 

as 

p. gj (A) = ~ ’ ( A M A )  - m g w  A E c. 
In fact for f, g, h E Cm(C), we easily see that 

fuf ,  gn, h]  +cycle (f, g. h) = ff’g - fg‘, h]  + cycle (f, g, h)  
= (f’g - fg’l’h - (f’g - fg’)h’ +cycle (f, g. h)  
= ( f”gh  - fg”h) - (f’gh’ - fg’h’) +cycle (f, g, h) = 0 

and thus the bracket (2.3) indeed defines a Lie algebra structure over C“(C). 
In what follows, we always assume that the spectral operator U = U ( u ,  A) E qol has 

an injective Gateaux derivative operator U‘ : Bq + ?;ol. We consider the spectral problem 

@r = U @  = U(u ,  A)@ 4, = V @  = V ( u ,  A)@ (2.4) 
where V E f E Cm(C). Noticing that U, = U’[u,] + AJ,, UA = aU/aA, we obtain 
that the evolution equation U, =~ K = K ( x , t , u ) ,  K E u4, possesses a zero curvature 
representation corresponding to (2.4) 

U, - v, + [U, VI = 0 (2.5) 
if and only if the vector field K satisfies 

u‘m + f(a)uL - v, + [U, V I  = 0. (2.6) 

Definition 2.1. Let V E v[ol. If there exist K E Bq and f E Cm(C) such that (2.6) holds, 
then V is called a Lax operator corresponding to f and K is called an eigenvector field of 
V corresponding to f .  

Assume that P(U) denotes all triples ( V ,  K ,  f) E Pol x 84 x Cm(C) satisfying (2.6) 
and, for f E Cm(C), we set 

i.e. all Lax operators corresponding to f, and 
E M ( U ,  f )  = EfM(U, f) = {K E 8.1 3V E M(U,  f) so that ( V ,  K, f) E P(U))  
i.e. all eigenvector fields of M(U, f) comsp_onding to f .  For ( V ,  K, f), (W, S, g) E 
?(U) ,  we construct a new operator [ V ,  W J  E Y;ob as follows 

At = j ( A )  

M(U, f) = [V E qoll 3K E Bq so that ( V ,  K, f) E P(U)] 

av,wn = v ’ [ s ] - W ’ [ K ] + [ v , W ] + g V A - f W A  (2.7) 
which plays a crucial role in our theory. 
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Theorem 2.1. Let (V, K ,  j ) ,  (W, S, g) E ?(U). Then ([V, Wl , [ K ,  SI, [ j ,  g]) belongs 
to P(U),  too, i.e. 

U J I [ K !  SII + [f, g] (A)UA - uv,  wn, +[U,  uv, wni = o (2.8) 

which implies that the operator UV, W l  defined by (2.7) is a Lax operator corresponding to 
[f. g] given by (2.3). 

Proof. By using the assumption (V, K, j ) ,  (W, S, g) E ?(U), we obtain 

VJSI - [U,  VI'[Sl = (U'[KI)'[SI + fU$I 

Wi[KI- [ U ,  W" = (U"I)'[Kl + gup1 
( 2 . 9 ~ )  

uL[Kl = VLA - 
ui[S] = W x h  - [ U ,  WIA - &.uA - guAA. 

VIA - fAuA - fuAA 
(2.9b) 

Set E = V'[S] - W'[K] + [V, W]. We have 

E, - [U,  El = V$l- W:[KI + [VX, WI + [V, W,] - [U, V'[S] - W'[Kl+ [V, Wll. 

In addition, 

[U,  [ v ,  Wll = [ v ,  [U, wll-[w, [U,  VI] = [ v ,  ws-~ ' [S]-g~Al-[w,  vx-u'[K]-fuAl. 

Therefore by (2.9u),(2.9b), 

E, - [U,  E] = Vi[S] - W:[Kl- [U, V'[S] - W'[K]] 

f [v ,  u'[S] f guA1 - [W,  U'[Kl+ fuAl 
= vi[S] - Wi[K] - [U,  vl'[sl + [U, WI'[K] + g[v, UAl - f [ w ,  UJ.1 

= U ' [ [ K ,  SI] + fuL[Sl - gUi[Kl 

= U'[[K ,  s]l+fwxA-f[ul, wAl-gvxA+g[u, vA]+[f, g] UA 

g[v,  U;] - f [ w ,  UA] (by (2.90)) 

(by (2.9b)). 

(2.10) 

It follows from the equality (2.10) that (BV, W ]  , [ K ,  SI, [f, g]) satisfies (2.6) and thus the 
proof is completed. U 

By the above theorem, we easily know that if two evolution equations  ut^ = K ,  ut = S 
( K ,  S E J3q) are, respectively, the compatibility conditions of the spectral problems 

q5x = U #  A, =ah"' q5x = U @  U €qo) 
r$t = Uq5 At = bAh q5t = wq5 w E qo) 

where a, b  c con st ants, m. n > 0, then the product equation ut = [ K ,  SJ is the compatibility 
condition of the following spectral problem 

q5z = Uq5 A, = ab(m - n)h"+"-' q5* = v ,  WI q5 
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With UV, Wll = V'LSI- W'[Kl  + [ V ,  W ]  + bAnVA - ahm WA. Hence we see that 

[ M W ,  O), M(U,  A")] E M(U, 0) m > 0. 

Further we have 

and thus 

[EM(U,  O), [EM(U,O),  EM(U, Am)ll = 0 m > 0 

provided that M(U, 0) is commutative. This reveals why the non-isospectral vector fields 
can become the first-order master symmetries of the isospectral flows. This is usually 
shown by complicated calculation. In addition, through using theorem 2.1 we can obtain 
the following two results. 

Corollary 2.1. If (vi, Ki, fi) E P(U),  i = 1,2,3. Then 

uuv,, v,n, v3n, - [U, uuv,, v d ,  v3m +cycle (v l ,  v2, v3) = 0. 

Proof. Notice that (Bq, [., .I) and (Cm(C), I., .J) are Lie algebras. The required result 
0 follows theorem 2.1, namely (2.8). 

Corollary 2.2. Let (vi, K;, fi) E P(u), i = ~ 2 . 3 .  If [VI, vzn = 
then [K,, Kz] = K3. 

Proof. 

and If,, f in = f 3 ,  

By theorem 2.1, namely g8), and the assumption, we have 

u m ,  K ~ I I =  - [fl, f 2 ]  ( a m  + uvl, v2nz - [ U ,  uv l ,  v2ni 
= - f3(a)UA + V h  - [U,  V3l = U". 

Thus [K,, Kz] = K3 as U' is injective. 0 

Because we assume that U' is injective, a Lax operator in M(U,O) has only an 
eigenvector field corresponding to f = 0. Suppose that U ' [ K ]  - V, + [U, VI = 0 and 
U'[S] - W, + [ U ,  W ]  = 0, we define 

uv, wno = v u 1  - WWI + [ v ,  WI (2.11) 

which is well defined. This moment M(U.0) constitutes an algebra with regard to 
I[., .lo and thus (EM(U,O),  [., .I) is a Lie algebra. Set K ( U )  = (V E qo)l V' = 
[U,  VI]. Obviously K ( U )  is a subspace of &(U. 0) and the bracket I[., .Bo over 
K ( U )  reduces to the matrix commutator [.,.I. Moreover by theorem 2.1, we may 
see that [ [K(U) ,  M(U,  O W ,  EM(U, O), K(U)llo E K(U) .  Therefore K ( U )  is an ideal 
subalgebra of (M(U,  0), [...Bo). In this way, we can generate a quotient algebra 
(M(U, O)/K(U),  II., .]lo). By using corollary 2.1, we may acquire the following result. 
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The quotient algebra (CL(M(U, 0)) := M(U, O) /K(U) ,  I., .lo) is a Lie Theorem 2.2. 
algebra and isomorphic to the Lie algebra ( E M ( U ,  O), I., . I )  under the mapping 

p : CL(M(U, 0)) = M(U,  O) /K(U)  + E M ( U ,  0) 

C L ( V )  := ( W  E M(U,O)I w - v E K ( U ) ]  H K 

where V E M(U, O), K E E M ( U ,  0) satisfy U’IK] - V, + [U,  VI = 0. 

This theorem also implies that an equation U, = K (U’[K] - Vx + [ U ,  VI = 0) only 
possesses a set C L ( V )  of Lax operators. A similar result for L-A-B triad representations 
of integrable system~has been established in [131. In the next section we shall use the 
above theory of Lax operators to discuss the case of coupled Kdv systems. In particular, 
by using corollary 2.2 of theorem 2.1, we know that we may calculate the algebra relations 
of the corresponding Lax operators to give the symmetry algebras of integrable systems. 

3. The non-isospectral flows and Lax operator algebra of coupled Kdv systems 

Let us now consider the spectral problem (1.1) with the potential U = (UO, UI, . . . , u9--l) T . 
Setting $ = $1, $x = &, then (1.1) may be rewritten as 

Suppose that the associated problem is as follows 

Clearly the compatibility condition Ut - V, + [ U ,  VI = 0 in this case gives equivalently 

~ ( 1 )  = -!.v@). v0) = ~ ( 1 )  - QV(S Q, = -vF) - ~ Q v ( ~ ) ,  Z X  

Therefore, we have 

Qr = 2 D [ ( i D 2  + Q - $ l Q x ) V c ” ]  

where D = a/ax, I = dx’, DI = I D  = 1. We make 

R.  - Ig. Dz + vi - i l ~ .  2 LX o < i < q  1 - 4  L I  

Note that R, = -1. Eventually we arrive at 

(3.2) 
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3.1. The isospectral (A, = 0) case 

We choose that 

Then we set 

which is equivalent to (3.4) in fact. In this way, we see that 

P q-1 . 
2 0  Rihi Viz) = 2 0  (2 Rjaj+,,,-i)Ai + 20F ($ Rjaj+n-i)A' 

i=O r=O ,a r=q 

9-1 i 
= 2 0  (E Rjajtm-i)hi. 

r=O j=o 

Hence the equality (3.3) gives an isospectral (A, = 0) hierarchy of evolution equations 

U* = K,  = 2 0  Roam, Roam-i + Riam, . . . ,E Rjaj+m-q+z, am+l 

From the above deduction, we know that (aj)?, in (3.5) is unique except a constant multiple 
when the integral constants are selected as zero. Let 

m >O. Y q-z 

( j = O  

0 0 ... 0 R: 

(3.6) 

with R,' = $ilDz + zli + ;ujJ, 0 < i < q - 1, which are the conjugate operators of 
Ri, 0 < i 4 q - 1. Here @ has been proved to be a hereditary symmetry (see [9-111). 
Since DRi = R:D, 0 <, i < q - 1, the isospectral hierarchy becomes 

(3.7) U, = K, = @K,,,-, =. . . = @"'KO = Gmu, m > 0 

by which @ is also a common strong symmetry of the whole hierarchy according to 
the result from Fuchssteiner [8]. It is clear that the coupled KdV hierarchy (3.7) with 
q = 1 (simultaneously I = 0) is just the KdV hierarchy of integrable systems (see [14] for 
example). For this coupled KdV hierarchy (3.7), many integrable properties such as multi- 
Hamiltonian structures, Miura maps, modified systems and compatible Poisson brackets 
have been presented in [9-11,15,16]. 
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3.2. The non-isospectral (Af = An+', n 2 0) case 

In this case, we choose that 

bj = 0 j e o bo = 4(q - I ) X  

where vi = 0, i < 0. Then we set 

(3.8) 

Since we have 
9 

(i - I - n)vi-,, = 2 0  Rjbjjjn-i q < i < q + n  
j=O 

equivalent to (3.8) in fact, the non-isospectral hierarchy of flows reads as 

~ ( l + n ) l v - , + R o b , ,  ; ( l + n -  I)Iv~-,+Rob,-i  

Further we may obtain 

ut = W" = @U"-, = . ... = V u 0  n > O  (3.10a) 

'with 
1 T 

U0 = ( qv0 + $kz - l)xvom (4 - I)Ul+ & -oxvim . . ., + I +  y ( q  - 0 x ~ q - I . x )  . 
(3.106) 

Below we want to verify that two hierarchies of Lax operators [Vm}rd, [ W n } z o  
constitute an infinite-dimensional Lie algebra with regard to the product (2.7) and thus 
we will generate the symmetry algebra of coupled KdV systems (3.7). Let 

Proposition 3.1. Let U be given by (3.1). If V E &KdV n M(U, 0) and Vl,,o = 0, then 
v = 0. 
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ProoJ Assume that 

and K = (KI, . . . , K9)T E I3q such that U'[K] - V, + [U, VI = 0. Analogously to the 
deduction of the isospectral hierarchy (3.7), we may obtain 

v(') = --'v") v(3) = -1V(Z) - QV(2) (3.11) 
2 x  2 xx 

Therefore we have 

9 

D Rjaj+n-i = 0 q < i < q + n. 
j=O 

It follows that V(" = 0 since R, = -1 and V(z)I.=~ = 0. Also by (3.111, V(') = V" = 0. 
U In this way, V = 0. .-- 

Denote by P I ~  the projection over V&: 

(3.12) 

For any 

if (V, K ,  f), (W, S, g )  E ?(U), then we can find 

P,,(~v,  wj) = V(~)'[SI - w ( ~ ) ' [ K ]  + v@)w,"' - v!z)w@) +gvF) - fw?). 
Therefore we  can easily obtain 

(3.13) 

Proposition 3.2. The functions P d U V m r  VJ), Plz(UV,, WJ), P1z(UWm, W,D, m, n 2 0, 
all belong to thespaceB(A) and thus the operators Wm,  VJ, IV,,,, W,], [E", W J ,  m, n > 
0, are all among the space ZCKdV. 

It is easy to see that for m, n a.0, 

Kmlu=o = U " I ~ = O  = 0 Ql,a = -A9-' 
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Proposition 3.3. Form, n > 0, we have 

UV,, V.1 LO = 0 m, n > 0 

I [ V m , W , n l . = ~ = [ ~ f ~ - 1 ) + m 1 V m i n l u = ~  m , n > O  

UW,, WJ LO = (m - n)Wm+nlu=o 

1 

m, n > 0. 

Proof. Let m, n > 0. We can calculate that 

nv,, wnn = nvmi.=o, wni.=on = [vmiu=o, W ~ I . = ~ I  + A ~ + ~ V , ~ I ~ = ~  

= [f(q - I )  + mIVm+a~u=o. 

The rest may be proved similarly. 0 

Now we give the concrete form of Lax operator algebra of coupled KdV systems. 

Theorem 3.1. 
commutator relations defined by (2.7) are as follows 

Let V,, W,, m, n 0, be given by ( 3 . 3 ,  (3.9), respectively. Then their 

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

which implies that the two hierarchies of Lax operators [ Vm]~a, ( W,,]zo associated with 
coupled KdV systems constitute an infinitedimensional Lie algebra under the product (2.7). 

Proof. We only verify (3.14b) since the proofs of~the relations are completely similar. 
By theorem 2.1, V := [Vm,  V,J - [ f ( q  - I )  + m]V,+, belongs to M(U, 0). Besides, we 
have V E 2 ~ ~ d v  and VlU=o = 0 by propositions 3.2 and 3.3, respectively. It follows 
from the first proposition that V is a  zero^ operator, which is exactly (3.14b). The proof is 
completed. 0 

We remark that the Gateaux derivative U' : Bq + 96) is injective. Therefore we can 
obtain a Lie algebra of isospectral and non-isospectra! vector fields. 

Corollary 3.1. Let K,, un, m, n > 0, be given by (3.7), and (3.10), respectively. Then 

[K,,K,J=O m,n>O 

[ ~ , , o ; l ~ = [ ~ ( q - l ) + m ] ~ , + ~  m.n>O 

[U,,,. c,,I = (m - n)u,+, m, n 2 0. 

From this corollary we can immediately deduce the following symmetry algebra of 
coupled Kdv systems (3.7). 
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Theorem3.2. Let K,,,, un, m, n > 0, be determined by (3.7) and (3.10). respectively. Then 
every integrable system ut = K,(s > 0) possesses a hierarchy K-symmetries of [K,,,]~=O 
and a hierarchy of 5-symmetries 7:) = [[f(q - I )  + s]tK,+,-+ un],"=, which constitute an 
infinite-dimensional Lie algebra with the commutator relations 

[K,,,, K,] = 0 m, n > 0 

[K,,,,T,?I = [ + ( q - ~ + m l ~ , , , + ,  m , n  > O  

[Q, T:)] = (m -n)z,,,+,, 6) m, n > 0. 

Theorem 3.2 also shows that [U,J,"=~ given by (3.10) is common master symmetries 
of first-order for all coupled KdV systems in (3.7). We point out that the above symmetry 
algebra may be acquired by using the skeleton of Ma [4] and Oevel [5]. But here it is more 
natural to generate the symmetry algebra on the basis of zero curvature representations. 
Moreover, the Lax operator algebra hidden in the back of the symmetry algebra is exposed. 
In fact, it is because isospectral (A, = 0) and non-isospectral (At = A", n > 0) Lax operators 
constitute a Lie algebra under the product (2.7) introduced in section 2 that isospectral 
integrable systems possess a symmetry algebra. We will give a fuller description of this 
property related to zero curvature representations in a future publication. 
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